Silver nanocubes for multispectral imaging and printing

Researchers at Duke University recently published a paper in Advanced Materials describing the development of a technique to detect light across the electromagnetic spectrum. As opposed to using materials that absorb specific wavelengths of light, silver nanocube structures trap different types of light. This can be controlled by changing the size and arrangement of the nanocubes. To learn more see the Duke press release or read the article.

Toward Multispectral Imaging with Colloidal Metasurface Pixels
Jon W. Stewart, Gleb M. Akselrod, David R. Smith, and Maiken H. Mikkelsen

Abstract: Multispectral colloidal metasurfaces are fabricated that exhibit greater than 85% absorption and ≈100 nm linewidths by patterning film-coupled nanocubes in pixels using a fusion of bottom-up and top-down fabrication techniques over wafer-scale areas. With this technique, the authors realize a multispectral pixel array consisting of six resonances between 580 and 1125 nm and reconstruct an RGB image with 9261 color combinations.